
2 kV, 0.7 mΩ·cm² Vertical Ga₂O₃ Superjunction Schottky Rectifier with Dynamic Robustness

We report the first experimental demonstration of a vertical superjunction device in ultra-wide bandgap (UWBG) Ga₂O₃. The device features 1.8 µm wide, 2×10^{17} cm⁻³ doped n-Ga₂O₃ pillars wrapped by the charge-balanced p-type nickel oxide (NiO). The sidewall NiO is sputtered through a novel self-align process. Benefitting from the high doping in Ga₂O₃, the superjunction Schottky barrier diode (SJ-SBD) achieves a ultra-low specific on-resistance ($R_{ON,SP}$) of 0.7 m Ω ·cm² with a low turn-on voltage of 1 V and high breakdown voltage (BV) of 2000 V. In the unclamped inductive switching tests, the device shows a dynamic BV of 2.2 kV and no degradation under 1.7 kV repetitive switching, verifying the fast acceptor depletion in NiO under dynamic switching.

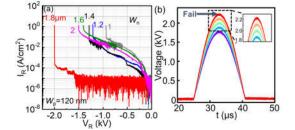


Fig.1. Schematic of vertical Ga₂O₃ superjunction Schottky barrier diode (SJ-SBD)

Fig. 2. (a) Reverse I-V characteristics of the Ga₂O₃ SJ-SBDs with w_n of 1-2 μ m (b) Dynamic characteristics of the device in the UIS test

Fig. 1 shows the 3D schematic of our Ga₂O₃ SJ-SBD. The n-Ga₂O₃ pillars are wrapped around by p-NiO. The acceptor concentration (N_A) in NiO is designed to be larger than donor concentration (N_D) in Ga₂O₃. This makes the NiO thickness (w_p) much smaller than the Ga₂O₃ pillar width (w_n) at charge balance ($w_pN_A = w_nN_D/2$). This small w_p and a sufficient pillar spacing ($S > 2w_p$) can ease the NiO deposition into deep trenches and avoid the early coalescence at the top of the trench. In each Ga₂O₃ pillar, in addition to the n-Ga₂O₃ layer, a top n⁻-Ga₂O₃ layer is designed to boost BV by 1) lowering the tunneling leakage current of the Schottky contact and 2) moving the peak E-field from the Schottky contact into the bulk superjunction region.

Fig. 2 (a) shows the reverse I-V characteristics of Ga₂O₃ SJ-SBDs with w_n of 1~2 µm and an identical w_p of 120 nm. *BV* increases with the increasing w_n , reaching ~2 kV at w_n =1.8 µm, and starts to decrease at larger w_n . This behavior manifests the critical role of charge balance. Fig. 2 (b) shows the UIS waveforms of Ga₂O₃ SJ-SBDs (w_n =1.8 µm) under the increased inductive energy. The device survives the 2 kV UIS test and fails at a dynamic *BV* of 2.2 kV. This slightly higher dynamic *BV* than static *BV* is also reported in GaN HEMTs and may be due to the reduced trap ionization in short pulses (which may lead to the more precise charge balance if a slight mismatch exists in DC conditions). Practically, this suggests a higher device overvoltage margin in switching.

In summary, we demonstrate the first functional vertical superjunction device in Ga₂O₃. A bilayer epi enables the low Schottky leakage current and E-field migration into the bulk Ga₂O₃. A novel self-align process obviates the NiO etch and greatly simplifies the device fabrication. The device's $R_{ON,SP}$ vs. BV trade-off is among the best in all power SBDs. The hetero-superjunction retains high BV at high temperature and in dynamic switching. These results mark the arrival of UWBG superjunctions and show their promise for power electronics.