# Design and Evaluation of the Constant-Flux Inductor with Enclosed Winding

For this paper, a behavioral model of a constant-flux inductor was constructed. With given specifications, a winding configuration with uniform flux distribution can be achieved by following the design equations and procedures. In order to generalize the design procedure and to analyze the impacts of design parameters systematically, the constructed model with normalized parameters is discussed herein. As shown in Fig. 1, by using normalized parameters for an optimal design, an improvement factor of two on the Q

_{dc}is obtained for the whole series of inductors thanks to the constant-flux distribution.

In this paper, the optimal design of a constant-flux inductor that maximizes the inductor's performance is discussed. The design procedure of the constant-flux inductor is normalized so that the results are more general. In addition, the normalization decouples geometrical dimensions and magnetic material properties in design and evaluation. The heat rating current is improved by 50% because the DC quality factor of the constant-flux inductor is two times larger in comparison to a commercial product with the same volume and inductance. The saturation rating current is also improved by 20% as a result of the uniform flux distribution inside the core. The simulation result of the saturation current is verified by the measurement results on the fabricated inductor prototype under different DC currents.