EMITTER TURN-OFF THYRISTORS AND THEIR DRIVE CIRCUITS

Inventors: Oin Huang, Blacksburg, VA (US); Bin Zhang, Blacksburg, VA (US)

Assignee: Virginia Tech Intellectual Properties, Inc., Blacksburg, VA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 10/378,606
Filed: Mar. 5, 2003
Prior Publication Data

Related U.S. Application Data
Provisional application No. 60/301,718, filed on Mar. 6, 2002.

Int. Cl. 7 H03K 17/72
U.S. Cl. 327/438, 327/440
Field of Search 327/376, 327/438, 440, 441, 470-474

References Cited
U.S. PATENT DOCUMENTS

Primary Examiner—My-Trang Nu Ton
Attorney, Agent, or Firm—Whitham, Curtis & Christofferson, P.C.

ABSTRACT

A family of emitter turn-off thyristors and their drive circuit comprise a gate turn-on (GTO) thyristor, a first switch, the drain of the first switch being connected to the cathode of the GTO thyristor, and a second switch connected between the gate of the GTO thyristor and the source of the first switch. The first switch consists of many paralleled metal oxide semiconductor field effect transistors (MOSFETs). The anode of the GTO thyristor and the source of the first switch serve as the anode and the cathode, respective, of the emitter turn-off thyristor. The emitter turn-off thyristor has four control electrodes: the gate of the GTO thyristor, the control electrode of the second switch, the gate of the first switch, and the cathode of the GTO thyristor. The drive circuit comprises a current source circuit, a voltage clamp circuit, a current direction detector, and a control circuit. The ETO thyristor further comprises a current sensing and overcurrent detector circuit. The first switch is packaged in a printed circuit board.

46 Claims, 17 Drawing Sheets
Figure 1b

PRIOR ART
Figure 2
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
1
EMITTER TURN-OFF THYRISTORS AND THEIR DRIVE CIRCUITS

CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of provisional application No. 60/361,718 filed Mar. 6, 2002.

This application is related in subject matter to U.S. patent application Ser. No. 09/486,779 filed Mar. 2, 2000, by Alex Q. Huang for “Emitter Turn-off Thyristors (ETO)”, the disclosure of which is incorporated herein by reference.

GOVERNMENT LICENSE RIGHTS

The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of contract No. DABT42-67C-263531 awarded by the Tennessee Valley Authority (TVA).

DESCRIPTION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to the field of power electronics. More specifically, the present invention relates to several newly improved versions of the emitter turn-off thyristors and their drive circuits.

2. Background Description

The gate turn-off (GTO) thyristor is a four-layer semiconductor device of the structure PNPN, usually fabricated on a single wafer up to six inches in diameter. In the on-state it exhibits a latching behavior which enables it to achieve very low conduction loss at a high current density. Unfortunately, this latched state causes problems when the device turns off. This is because some parts of the die (cells) remain latched even when the anode voltage begins to rise, leading to a poor safe operating area (SOA). A bulky snubber capacitor is required to protect the GTO thyristor during the turn-off process. The discharge of this snubber capacitor requires significant power dissipation by a resistor or the use of complex energy recovery circuits, leading to increased system size and complexity. Turning the GTO thyristor off requires a gate current equal to approximately one fifth to one third of the anode current which must be supplied for a long time by the gate driver.

The turn-off performance of the conventional GTO thyristor can be dramatically improved by driving the gate current to be greater than or equal to the anode current during turn-off. In this condition, referred to as unity-gain or hard-driven, the upper NPN transistor turns off very quickly while the GTO thyristor is still in the conduction state. If this transistor is completely off before the PNP portion of the thyristor turns off, then there is no positive feedback loop present during the voltage rise phase. The PNP transistor with the base open is very robust, especially compared to the latched turn-off of a GTO thyristor. When the unity gain condition is satisfied the current distribution is very uniform across the entire die during the turn-off transient. This gives a much larger SOA than the GTO thyristor has. One of the devices that can achieve unity-gain turn-off is an emitter turn-off (ETO) thyristor as disclosed in application Ser. No. 09/486,779.

FIG. 1A shows the ETO thyristor equivalent circuit, and FIG. 1B shows the cross section of the ETO thyristor mechanical structure. The ETO thyristor has an additional switch in series with the cathode of the GTO thyristor. The cathode of the GTO thyristor is the emitter of the internal NPN transistor, so the series switch is referred to as the emitter switch. Turning off this switch applies a high transient voltage long enough to commutate the current from the cathode to the gate of the GTO thyristor so that unity-gain is achieved. An additional switch is connected to the gate of the GTO thyristor, and is complementary to the emitter switch. These switches are implemented with many paralleled low-voltage voltage, high-current metal oxide semiconductor field effect transistors (MOSFETs). However, when an anode short GTO thyristor or a transparent emitter GTO thyristor is used to build the ETO thyristor (this is the usual condition), there will be a parasitic diode present from gate to anode of the GTO thyristor. When used in high power voltage source converters, the ETO thyristor is usually connected with its anti-parallel free-wheeling diode to form a switch that can block unidirectional voltage and conduct bi-directional current. When the anti-parallel diode conducts current, the parasitic diode of the ETO thyristor may also come into conduction if the voltage drop of the path through the ETO thyristor is comparable to that of the free-wheeling diode. In other words, there is a parasitic reverse current conduction path in the ETO thyristor. This is likely to occur during both the ETO thyristor gated “on” and the ETO thyristor gated “off” conditions. If the ETO thyristor starts to block the positive voltage right after its parasitic diode conducting current, the ETO thyristor failure may occur due to the poor reverse recovery performance of the ETO thyristor’s parasitic diode.

Also, when the ETO thyristor turns off, there is a current which is equal to the anode current flow through the gate stray inductor. In this condition, a resonant process may occur involving the stray inductance of the gate loop, the junction capacitance of the ETO thyristor, and the recovering diode of the ETO thyristor’s emitter switch. When the resonant current flow is into the gate and out of the cathode of the GTO thyristor, it may initiate a retriggering of the GTO thyristor, which leads to turn-off failure. Additionally, it can be seen from FIG. 1B that the gate switch and the emitter switch are all mounted on the copper disc. This mechanical structure makes the ETO thyristor difficult to produce.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to supply a family of improved emitter turn-off (ETO) thyristors that eliminate the reverse current path, are more reliable to switch, and have an improved housing, allowing it to be produced more easily.

A further purpose of this invention is to provide efficient drive circuits for the ETO thyristors. The drive circuit can block the turn-on command during the time when the anti-parallel diode conducting current. This function can save energy for the drive circuit and improve reliability of the ETO thyristor in a pulse width modulated (PWM) converter application condition.

Furthermore, this invention provides a self-powered ETO drive method. Using this method, no individual power input is needed for the driving circuit. This self-powered ETO thyristor and its drive circuit greatly improve the reliability and reduce the cost.

According to one aspect of the invention, there is provided an emitter turn-off thyristor comprising a gate turn-on (GTO) thyristor, a first switch, the drain of the first switch being connected to the cathode of the GTO thyristor, and a
second switch connected between the gate of the GTO thyristor and the source of the first switch. The first switch consists of a number of paralleled metal oxide semiconductor field effect transistors (MOSFETs). The anode of the GTO thyristor and the source of the first switch serve as the anode and the cathode, respectively, of the emitter turn-off thyristor. The emitter turn-off thyristor has four control electrodes; the gate of the GTO thyristor, the control electrode of the second switch, the gate of the first switch, and the cathode of the GTO thyristor.

In a first embodiment, the second switch consists of a number of paralleled MOSFETs. In addition, the MOSFETs are connected series with a diode. The diode serves to block current from the source of the second switch to the anode of the GTO thyristor.

In a second embodiment, the second switch consists of a number of paralleled insulated gate bipolar transistors (IGBTs). The collector of the second switch is connected to the gate of the GTO thyristor, and the emitter of the second switch is connected to the source of the first switch.

In a third embodiment, the second switch consists of a series circuit of a switch and a capacitor. There is a first diode connected in parallel with the switch, and the second diode connected in parallel with the capacitor.

In a fourth embodiment, a series circuit of a first diode and a capacitor, and this series circuit being connected in parallel with the first switch. The voltage across the first switch will be clamped by the capacitor during the turn-off transient. The power stored in the capacitor can be used to drive for the control circuit of the ETO thyristor.

Another object of the present invention is to provide a novel ETO thyristor current sensing circuit and a new over-current detection circuit. The output of the current sensing circuit can be used for current control purpose and the output of the over-current detection circuit can be used for over-current protection purpose.

In addition to the family of improved emitter turn-off thyristors and their drive circuits, it is another object of the invention to provide an improved housing of the ETO thyristor. This improved housing, in addition to providing better operation of the ETO thyristor, is designed in such a way as to make it easier to manufacture.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:

FIG. 1A is an equivalent circuit diagram of an emitter turn-off (ETO) thyristor;

FIG. 1B is the cross-sectional view of the ETO thyristor mechanical structure of FIG. 1A;

FIG. 2 is an equivalent circuit diagram of an ETO thyristor according to a first embodiment of the invention;

FIG. 3 is an equivalent circuit diagram of an ETO thyristor according to a second embodiment of the invention;

FIG. 4 is an equivalent circuit diagram of an ETO thyristor according to a third embodiment of the invention;

FIG. 5 is an equivalent circuit diagram of an ETO thyristor according to a fourth embodiment of the invention;

FIG. 6 is an equivalent circuit diagram of an ETO thyristor driving circuit according to a fifth embodiment of the invention;

FIG. 7 is an ETO thyristor driver timing diagram according to a fifth embodiment of the invention;

FIG. 8 is an equivalent circuit diagram of an ETO thyristor driving circuit according to a sixth embodiment of the invention;

FIG. 9 is an ETO thyristor driver timing diagram according to a sixth embodiment of the invention;

FIG. 10 is an equivalent circuit diagram of an ETO thyristor driving circuit according to a seventh embodiment of the invention;

FIG. 11 is an equivalent circuit diagram of an ETO thyristor driving circuit according to an eighth embodiment of the invention;

FIG. 12 is an ETO thyristor driver timing diagram according to a seventh embodiment of the invention;

FIG. 13 is an ETO thyristor current sensing and over-current detector circuit diagram according to an eighth embodiment of the invention;

FIG. 14 is an assembly drawing schematically illustrating the housing of an ETO thyristor according to a ninth embodiment of the invention; and

FIG. 15 is a cross-sectional view schematically illustrating the housing of an ETO thyristor according to a ninth embodiment of the invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION

Referring again to the drawings, and more particularly now to FIG. 2, there is shown an equivalent circuit diagram of an ETO thyristor according to a first embodiment of the invention. In this structure, a number (m pieces, in the depicted example, n=68) of paralleled MOSFETs, S_{1}-S_{m}, are used to build the emitter switch. There are also resistors R_{1}-R_{m} connect to the gates of the MOSFETs. The drains of S_{1}-S_{m} connect to the cathode of the GTO thyristor. Between the cathodes of emitter switch S_{1}-S_{m} and the gate of the GTO thyristor, there is a series circuit of a gate switch and a gate diode. A number (n pieces, in the depicted example, n=12) of paralleled MOSFETs, S_{1}-S_{n}, are used to build the gate switch. There are resistors R_{1}-R_{n} connect to the gates of the MOSFETs. And there are a number (i pieces, in the depicted example, i=12) of paralleled diodes, D_{1}-D_{i}, are used to build the gate diode. The anode of the GTO thyristor, ANODE, and the sources of S_{1}-S_{n}, KATHODE, are defined as the anode and the cathode of ETO thyristor respectively. There are four control pins: GATE1 is the gate of the GTO thyristor, GATE2 is the control input of S_{1}-S_{m}, GATE3 is the control input of S_{1}-S_{m}, and KATHODE is the cathode of GTO thyristor. To turn off the ETO thyristor, turn off emitter switch S_{1}-S_{m} and turn on gate switch S_{1}-S_{m}. To turn on the ETO thyristor, turn on emitter switch S_{1}-S_{m}, turn off gate switch S_{1}-S_{m}, and inject current into GATE1. D_{1}-D_{i} are used to block the current from KATHODE to ANODE when voltage of KATHODE is higher than the voltage of ANODE in the PWM voltage source converter application.

Referring now to FIG. 3 there is an equivalent circuit diagram of an ETO thyristor according to a second embodiment of the invention. In this structure, a number (m pieces, in the depicted example, n=68) of paralleled MOSFETs, S_{1}-S_{m}, are used to build the emitter switch. There are also resistors R_{1}-R_{m} connect to the gates of the MOSFETs. The drains of S_{1}-S_{m} connect to the cathode of the GTO thyristor. A number (n pieces, in the depicted example, n=12) of paralleled insulated gate bipolar transistors...
(IGBT) $S_{1}\rightarrow S_{1\text{m}}$ are used to build the gate switch. There are also resistors $R_{R_{1}} \rightarrow R_{R_{1\text{m}}}$ connect to the gates of the IGBTs. The anodes of $S_{1}\rightarrow S_{1\text{m}}$ connect the gate of GTO thyristor. The sources of $S_{1\text{m}} \rightarrow S_{1\text{m}}$ and the sources of $S_{1}\rightarrow S_{1\text{m}}$ are connected together. The anode of the GTO thyristor, ANODE, and the sources of $S_{1\text{m}} \rightarrow S_{1\text{m}}$ and $S_{1}\rightarrow S_{1\text{m}}$ KATHODE1, are defined the anode and the cathode of ETO thyristor respectively. There are four control pins; GATE1 is the gate of the GTO thyristor, GATE2 is the control input of $S_{1}\rightarrow S_{1\text{m}}$, GATE3 is the control input of $S_{1\text{m}} \rightarrow S_{1\text{m}}$, and KATHODE2 is the cathode of GTO thyristor. To turn off the ETO thyristor, turn off emitter switch $S_{1}\rightarrow S_{1\text{m}}$ and turn on gate switch $S_{2}\rightarrow S_{1\text{m}}$. To turn on the ETO thyristor, turn on emitter switch $S_{1}\rightarrow S_{1\text{m}}$ turn off gate switch $S_{1}\rightarrow S_{1\text{m}}$ and inject current into GATE1.

Referring now to FIG. 4 there is an equivalent circuit diagram of an ETO thyristor according to a third embodiment of the invention. In this structure, a number (mn pieces, in the depicted example, m=68) of paralleled MOSFETs, $S_{1\text{m}} \rightarrow S_{1\text{m}}$, are used to build the emitter switch. There are also resistors $R_{R_{1}} \rightarrow R_{R_{1\text{m}}}$ connect to the gates of the MOSFETs. The drains of $S_{1\text{m}} \rightarrow S_{1\text{m}}$ connect to the cathode of the GTO thyristor. Between the cathodes of emitter switch $S_{1}\rightarrow S_{1\text{m}}$ and the gate of the GTO thyristor, there is a series circuit of a gate switch S_{2} and a capacitor C_{z}. S_{2} has three terminals among which G is the control input. There is a diode D_{2} which is connected in parallel with C_{z}. And there is a diode D_{3} which is connected in parallel with S_{2}. The anode of the GTO thyristor ANODE, and the sources of $S_{1\text{m}} \rightarrow S_{1\text{m}}$ KATHODE1, are defined the anode and the cathode of ETO thyristor respectively. There are four control pins; GATE1 is the gate of the GTO thyristor, GATE2 is the control input of $S_{1\text{m}} \rightarrow S_{1\text{m}}$, and KATHODE2 is the cathode of GTO thyristor. To turn off the ETO thyristor, turn off emitter switch $S_{1}\rightarrow S_{1\text{m}}$ and turn off gate switch $S_{1}\rightarrow S_{1\text{m}}$. To turn on the ETO thyristor, turn on emitter switch $S_{1}\rightarrow S_{1\text{m}}$ turn off gate switch $S_{1}\rightarrow S_{1\text{m}}$ and inject current into GATE1.

Referring now to FIG. 6 there is an equivalent circuit diagram of an ETO thyristor drive circuit according to a fifth embodiment of the invention. In this structure, the ETO thyristor is according the first embodiment of the invention as shown in FIG. 2. The ETO thyristor drive circuit includes a pulse current source $C_{S_{1}}$, a DC current source circuit $C_{S_{2}}$, and voltage clamp circuit CLAMP, a current direction detector 3, and the Control Circuit 2. $C_{S_{1}}$ connects to KATHODE2 and GATE1. $C_{S_{2}}$ is to provide a pulse current to the GTO thyristor for latching the thyristors in the control path. $C_{S_{2}}$ connects to KATHODE1 and GATE1. $C_{S_{2}}$ is to provide a DC current to the GTO thyristor’s gate during ETO thyristor’s on state. In the depicted example, $C_{S_{2}}$ includes a voltage source $V_{S_{2}}$, a PNP power transistor S_{2}, two resistors $R_{R_{1}}$ and $R_{R_{2}}$, a transistor S_{2} and a diode D_{3} which is used to block the voltage when the voltage of GATE1 is bigger than the $V_{S_{2}}$. The clamp circuit CLAMP is connected to KATHODE2 and GATE1. CLAMP is to make to gate of the GTO thyristor reverse bias during its off state to prevent its false trig on. In the detailed example, CLAMP is a series circuit of a voltage source VS_{1}, a MOSFET S_{2} and a diode D_{2}. Current direction detector 3 is connected to GATE1 and KATHODE1. In the PWM voltage source converter application, there will be a diode connected in anti-parallel with the ETO thyristor. Current direction detector 3 is used to detect whether that anti-parallel diode is conducting current. If the ETO thyristor’s anti-parallel diode is conducting current, the ETO thyristor is kept off to save the power of the drive circuit. In the depicted example, current direction detector 3 is a comparator COMP. If the output of COMP is low during the operation, it is indicated that the ETO thyristor’s anti-parallel diode is conducting current. In this case, the ETO thyristor is kept off to save the power of the drive circuit. So the ETO thyristor will be turned on only if COMMAND is high and the output of COMP is high. The ETO thyristor I and its drive circuit are controlled by control circuit 2.

Referring now to FIG. 7 there is an ETO thyristor drive timing diagram also according to the fifth embodiment of the invention as shown in FIG. 6. In FIG. 7, COMMAND is the control signal to trig the on/off of the ETO thyristor; I_{1} is the output of $C_{S_{1}}$; I_{2} is the output of $C_{S_{2}}$; V_{GATE1} is the voltage across GATE1 and KATHODE1; V_{GATE2} is the voltage across GATE2 and the cathodes of the emitter switch $S_{1}\rightarrow S_{1\text{m}}$, V_{GATE3} is the voltage across GATE3 and the cathodes of the gate switch $S_{1}\rightarrow S_{1\text{m}}$; V_{SS} is the voltage across the gate and cathodes of S_{2}. At time t_{2}, COMMAND is high. Since V_{GATE1} is negative, the ETO thyristor output of COMP is low. ETO thyristor is kept off. At time t_{2}, the voltage of the GTO thyristor’s gate is higher than the ETO thyristor’s cathode. At this time, both COMMAND and
the output of COMP are high. Then the turn-on action is initiated by control circuit 2. CS2 is triggered to inject a current pulse I2 to GATE1. V_GATE2 is changed from low level to high level to turn on ETO thyristor’s emitter switch S11-S12. V_GATE3 is changed from high level to low level to turn off ETO thyristor’s gate switch S11-S12. V_S3 is changed from high level to low level to turn off CLAMP. V_S5 is changed from low level to high level to turn on S25. Since S25 is turned on, the current of I2 increases. At the same time, V_GATE2 decreases to zero. The current pulse injection finishes. The GTO thyristor’s gate current is maintained only by I2. At time t1, COMMAND is low. The turn-off action is initiated by Control Circuit 2 immediately. V_GATE2 is changed from high level to low level to turn off ETO thyristor’s emitter switch S11-S12. V_GATE3 is changed from low level to high level to turn off ETO thyristor’s gate switch S11-S12. Since ETO thyristor’s emitter switch S11-S12 is turned off, there will be a positive voltage generated across the emitter and the drain of S11-S12 forcing the current divert from the cathode to the gate of the GTO thyristor, to achieve so-called unity turn-off gain. V_S3 is changed from low level to high level to turn on CLAMP so as to make gate of the GTO thyristor reverse bias during its off state. V_S5 is changed from high level to low level to turn off S5. Since S5 is turned off, I2 is decreased. As a result, the drive circuit power is saved.

Referring now to FIG. 8 there is an equivalent circuit diagram of an ETO thyristor drive circuit according to a sixth embodiment of the invention. In this structure, the ETO thyristor 1 is the third embodiment of the invention as shown in FIG. 4. The ETO thyristor drive circuit includes a DC current source circuit CS2, voltage clamp circuit CLAMP, current direction detector 3, and the control circuit 2. CS2 connects to KATHODE1 and GATE1. CS2 is to provide a DC current to the GTO thyristor’s gate during ETO thyristor’s on state. In the depicted example, CS2 includes a voltage source VS2, a PNP power transistor S2, two resistors R2 and R2, a transistor S2, and a diode D2, which is used to block when the voltage of GATE1 is bigger than the VS2. The clamp circuit CLAMP is connected to KATHODE2 and GATE1. CLAMP is to make gate of the GTO thyristor reverse bias during its off state to prevent its false trig on. In the depicted example, CLAMP is a series circuit of a voltage source VS1, a MOSFET S3, and a diode D2. Current direction detector 3 is connected to GATE1 and KATHODE1. In the PWM voltage source converter application, there will be a diode connected in anti-parallel with the ETO thyristor. Current direction detector 3 is used to detect whether that anti-parallel diode is conducting current. If the ETO thyristor’s anti-parallel diode is conducting current, the ETO thyristor is kept off to save the power of the drive circuit. In the depicted example, current direction detector 3 is a comparator COMP. If the output of COMP is low during the operation, it is indicated that the ETO thyristor’s anti-parallel diode is conducting current. In this case, the ETO thyristor is kept off to save the power of the drive circuit. So the ETO thyristor will be turned on only if COMMAND is high and the output of COMP is high. The ETO thyristor 1 and its drive circuit are controlled by control circuit 2.

Referring now to FIG. 9 there is an ETO thyristor drive timing diagram also according to the sixth embodiment of the invention. In FIG. 9, COMMAND is the control signal to trigger the on/off of the ETO thyristor; I1 is the output of CS2; I2 is the output of CS1; V_GATE1 is the voltage across GATE1 and KATHODE1; V_GATE2 is the voltage across GATE2 and the cathodes of the emitter switch S11-S12; V_GATE3 is the control voltage of GATE3; V_S3 is the voltage across the gate and cathodes of S2; V_S5 is the voltage across the gate and cathodes of S5. At time t1, COMMAND is high. Since V_GATE1 is negative, the ETO thyristor output of COMP is low. ETO thyristor is kept off. At time t2, the voltage of the GTO thyristor’s gate is higher than the ETO thyristor’s cathode. At this time, both COMMAND and the output of COMP are high. Then the turn-on action is initiated by control circuit 2. V_GATE2 is changed from low level to high level to turn on ETO thyristor’s emitter switch S11-S12. V_GATE3 is changed from high level to low level to turn on S5. Since S5 is turned on, I2 is increased. At time t3, the current of I2 increases. At the same time, V_S3 is changed from high level to low level to turn off CLAMP. V_S5 is changed from low level to high level to turn on S5. Since S5 is turned on, I2 is increased. At time t4, capacitor C1 has been discharged, but the loop inductance of the GTO thyristor’s gate will maintain the current. The current goes through diode D1. At time t5, the energy stored in the gate loop inductance is totally released. The current going into the GTO thyristor’s gate is provided by I2 only. At time t6, COMMAND is low. The turn-off action is initiated by control circuit 2 immediately. V_GATE2 is changed from high level to low level to turn off ETO thyristor’s gate switch S11-S12. V_GATE3 is changed from high level to low level to turn off S5. Since ETO thyristor’s emitter switch S11-S12 is turned off, there will be a positive voltage generated across the emitter and the drain of S11-S12 forcing the current divert from the cathode to the gate of the GTO thyristor, to achieve so-called unity turn-off gain. V_S3 is changed from low level to high level to turn on CLAMP so as to make gate of the GTO thyristor reverse bias during its off state. V_S5 is changed from high level to low level to turn off S5. Since S5 is turned off, the limitation of I2 is decreased. As a result, the drive circuit power is saved.

Referring now to FIG. 10 there is an equivalent circuit diagram of an ETO thyristor drive circuit according to a seventh embodiment of the invention. In this structure, the ETO thyristor 1 is the fourth embodiment of the invention shown in FIG. 5. The ETO thyristor drive circuit includes a pulse current source CS1, a DC current source circuit CS2, and voltage clamp circuit CLAMP, current direction detector 3, a series circuit of a DC voltage source VS1, a resistor R2, and the control circuit 2. CS1 connects to KATHODE2 and GATE1. CS2 is to provide a pulse current to the GTO thyristor’s gate when ETO thyristor’s is turned on. CS2 connects to KATHODE1 and GATE1. CS2 is to provide a DC current to the GTO thyristor’s gate during ETO thyristor’s on state. In the depicted example, CS2 includes a voltage source VS2, a PNP power transistor S2, two resistors R2 and R2, a transistor S2, and a diode D2, which is used to block when the voltage of GATE1 is bigger than the VS2. The series circuit of VS2 and R2 is connected between PG and KATHODE1. The clamp circuit CLAMP is connected to KATHODE2 and GATE1. CLAMP is to make gate of the GTO thyristor reverse bias during its off state to prevent its false trig on. In the depicted example, CLAMP is a series circuit of a voltage source VS1, a MOSFET S3, and a diode D2. Current direction detector 3 is connected to GATE1 and KATHODE1. In the PWM voltage source converter application, there will be a diode connected in anti-parallel with the ETO thyristor. Current direction detector 3 is used to detect whether that anti-parallel diode is conducting current. If the ETO thyristor’s anti-parallel diode is conducting current, the ETO thyristor...
is kept off to save the power of the drive circuit. In the
depicted example, current direction detector 3 is a compara-
tor COMP. If the output of COMP is low during the
operation, it is indicated that the ETO thyristor’s an-
parallel diode is conducting current. In this case, the ETO
thyristor is kept off to save the power of the drive circuit. So
the ETO thyristor will be turned on only if COMMAND is
high and the output of COMP is high. The series circuit of
V05 and Rs can be used to maintain a positive voltage across
V05 which is inside the ETO thyristor, and this voltage is lower
than the avalanche breakdown voltage of the ETO thyris-
tor’s emitter switch S151-S163m. The ETO thyristor 1 and
its drive circuit are controlled by control circuit 2.

Referring now to FIG. 7 again, there is an ETO thyristor
driver timing diagram also according to the seventh embo-
diment of the invention. In FIG. 7, COMMAND is the control
signal to trig the on/off of the ETO thyristor; I1 is the output
of CS2; V0 GATE1 is the voltage across GATE1 and KATHI-
ODE1; V0 GATE2 is the voltage across GATE2 and the
cathodes of the emitter switch S151-S163m. V0 GATE3 is
the voltage across GATE3 and the cathodes of the gate switch
S151-S163m. V0 S3 is the voltage across the gate and cathodes
of S151 at t1. COMMAND is high. Since V0 GATE1 is
negative, the ETO thyristor output of COMP is low. ETO
thyristor is kept off. At time t1, the voltage of the GTO
thyristor’s gate is higher than the ETO thyristor’s cathode.
At this time, both COMMAND and the output of COMP are
high. Then the turn-on action is initiated by control circuit 2.
CS2 is triggered to inject a current pulse I1 to GATE1.
V0 GATE2 is changed from low level to high level to turn
on ETO thyristor’s emitter switch S151-S163m. V0 GATE3 is
changed from high level to low level to turn off ETO
thyristor’s gate switch S151-S163m. V0 S3 is changed from
high level to low level to turn off CLAMP. V0 S5 is changed
from low level to high level to turn on S151. Since S151 is turned on,
I1 is increased. At time t1, I1 decreases to zero. The current
pulse injection finishes. The GTO thyristor’s gate current
is maintained only by I1. At time t2, COMMAND is low. The
turn-off action is initiated by control circuit 2 immediately.
V0 GATE2 is changed from high level to low level to turn
on ETO thyristor’s emitter switch S151-S163m. V0 GATE3 is
changed from low level to high level to turn on ETO
thyristor’s gate switch S151-S163m. Since ETO thyristor’s emis-
ter switch S151-S163m are turned off, there will be a positive
voltagage, which is clamped by C1 inside the ETO thyristor,
generated across the emitter and the drain of S151-S163m,
forcing the current divert from the cathode to the gate of
the GTO thyristor, to achieve so-called unity turn-off gain.
V0 S3 is changed from low level to high level to turn on
CLAMP so as to make gate of the GTO thyristor reverse bias
during its off state. V0 S5 is changed from high level to low
level to turn off S151. Since S151 is turned off, I1 is decreased.
As a result, the drive circuit power is saved.

Referring now to FIG. 11 there is an equivalent circuit
diagram of an ETO thyristor drive circuit according to a
eighth embodiment of the invention. In this structure, the
ETO thyristor 1 is according the fourth embodiment of the
invention, as shown in FIG. 5, and I1 is its anode current.
The ETO thyristor drive circuit includes a pulse current
source CS2, a DC current source circuit CS2, and voltage
clamp circuit CLAMP; current direction detector 3, PG
emitter detector 5, PG voltage precharge circuit 6, PG
voltage limiter 7, a DC—DC converter 4, and the control
circuit 2. CS2 connects to KATHIODE2 and GATE1. CS2 is
to provide a pulse current to the GTO thyristor’s gate when
ETO thyristor’s is turned on. CS2 also connects to KATH-
ODE2 and GATE1. CS2 is to provide a DC current to the
GTO thyristor’s gate during ETO thyristor’s on state. In the
depicted example, CS2 includes a voltage source VS2, a
PNP power transistor R3, two resistors R6 and R7, a trans-
istor S3, and a diode D3 which is used to block the voltage
when the voltage of GATE1 is bigger than the VS2.
The clamp circuit CLAMP is connected to KATHIODE2
and GATE1. CLAMP is to make the gate of the GTO thyris-
tor reverse bias during its off state to prevent its false trig.
In the depicted example, CLAMP is a series circuit of a
voltage source VS1, a MOSFET S1, and a diode D5. Current
direction detector 3 is connected to ANODE and KATHIODE1.
In the PWM voltage source converter application, there will
be a diode connected in anti-parallel with the ETO thyristor.
Current direction detector 3 is used to detect whether that
anti-parallel diode is conducting current. If the ETO thyris-
tor’s anti-parallel diode is conducting current, the ETO
thyristor is kept off to save the power of the drive circuit. In
the depicted example, the current direction detector 3
includes a comparator COMPI and a voltage divider VD.
VD is used to shift the voltage of ANODE, which is high
voltagage, to low voltage that can be received by the
comparator. In the depicted example, VD is a series circuit of two
resistors R6 and R7, and VD is connected to ANODE and
KATHIODE1. The negative input of VD is connected to
KATHIODE1, and the positive input of COMPI is connected to
the other terminal of R6. If the output of COMPI is low
during the operation, it is indicated that the ETO thyristor’s
anti-parallel diode is conducting current. In this case, the
ETO thyristor is kept off to save the power of the drive
circuit. So the ETO thyristor will be turned on only if
COMMAND is high and the output of COMPI is high. PG
voltage detector 5 is connected to PG and control circuit 2,
and it is used to detect the PG voltage and send the PG
voltage information to control circuit 2. If PG is too low,
control circuit 2 will delay the turn-on of emitter switch
S151-S163m so as to charge C1 by anode current I1. On the other
hand, control circuit 2 will not delay the turn-on of emitter
switch S151-S163m if PG is high enough. In the depicted
example, PG voltage detector 5 generates a positive
comparator output signal to trigger COMPI and COMPI2, whose
outputs are connected to control circuit 2. The positive inputs of
COMPI2 and COMPI3 are connected to PG. There are also voltage
references, Vref1 and Vref2, and Vref3 is lower than Vref2.
Vref2 is connected to COMPI2’s negative input, and Vref2 is
connected to COMPI3’s negative input. During the ETO
thyristor’s turn-on or on-state, if PG is lower than Vref3,
the output of COMPI2 is low, and control circuit 2 will keep
emitter switch S151-S163m off so as to charge C1 by anode
current I1, and emitter switch S151-S163m will not be turned on
until PG rises to Vref2, and the output of Vref3 turns to high.
On the other hand, if PG is bigger than Vref1 at the beginning
of the ETO thyristor’s turn-on, control circuit 2 will not
delay the turn-on of emitter switch S151-S163m. PG voltage
precharge circuit 6 is connected between ANODE and PG,
and it is used to charge C1 when the ETO thyristor is first
power on. PG voltage limiter 7 is connected between KATHI-
ODE1 and PG, and it is used to limit the voltage of PG to
voltage below than the avalanche breakdown voltage of
emitter switch S151-S163m. In the depicted example, PG voltage
precharge circuit 6 is a resistor R6 and PG voltage limiter 7
is a zener diode D3. The input of DC—DC converter 4 is
connected to PG and KATHIODE1. The input power of
DC—DC converter 4 is from the power stored in C1,
DC—DC converter 4 generates power for the total drive
circuit, including CS2, CLAMP, current direction
detector 3, PG voltage detector 5, PG voltage precharge
circuit 6, PG voltage limiter 7, and the control circuit 2. So in this embodiment of the invention, no individual power input is needed for the driving circuit. This self-powered ETO thyristor and its drive circuit greatly improves the reliability and reduces the cost. The ETO thyristor 1 and its drive circuit are controlled by control circuit 2.

Referring now to FIG. 12 there is an ETO thyristor driver timing diagram also according to the eighth embodiment of the invention. In FIG. 12, COMMAND is the control signal to trigger the on/off of the ETO thyristor; I_e is the output of CS_e; V_op is the voltage across GAE1 and KATHODE2; V_PG is the voltage across PG and KATHODE1; V_GAE2 is the voltage across GAE2 and the cathodes of the emitter switch S_1-S_m; V_GAE3 is the voltage across GAE3 and the cathodes of the gate switch S_1-S_m; V_S is the voltage across the gate and cathodes of S_1-S_m; S_1-S_m is the voltage across the gate and cathodes of S_1. At time t_e, COMMAND is high. Since V_GAE1 is negative, the ETO thyristor output of COMP is low. ETO thyristor is kept off. At time t_e, the voltage of the GTO thyristor’s gate is higher than the ETO thyristor’s cathode. At this time, both COMMAND and the output of COMP are high. Then the turn-on action is initiated by control circuit 2. Therefore, ETO thyristor’s gate is charged high level to low level to turn off ETO thyristor’s gate switch S_1-S_m. V_S is charged from high level to low level to turn off CLAMP. V_S is charged from low level to high level to turn on S_2. Since S_2 is turned on, I_e is increased. Since V_PG is lower than V_PGoley at this time, the output of COMP is low. Therefore, V_GAE2 is still low, and as a result, ETO thyristor’s emitter switch S_1-S_m are kept off. Since S_1-S_m is off, the ETO thyristor’s anode current I_e will change C_e through paralleled diodes D_1-D_4 causing V_PG rising. At time t_e, I_e decreases to zero. The current pulse injection finishes. The GTO thyristor’s gate current is maintained only by I_e. At time t_e, V_PG rises to V_PGoley. Control circuit 2 detects that the output of COMP turns to high, and then charges V_GAE2 from low level to high level to turn on ETO thyristor’s emitter switch S_1-S_m. At time t_e, COMMAND is low. The turn-off action is initiated by control circuit 2 immediately. V_GAE2 is charged from high level to low level to turn off ETO thyristor’s emitter switch S_1-S_m. V_GAE3 is charged from low level to high level to turn on ETO thyristor’s gate switch S_1-S_m. Since ETO thyristor’s emitter switch S_1-S_m are turned off, there will be a positive voltage which is clamped by C_c inside the ETO thyristor, generated across the emitter and the drain of S_1-S_m, forcing the current divert from the cathode to the gate of the GTO thyristor, to achieve so-called unity turn-off gain. V_S is charged from low level to low level to turn on CLAMP so as to make gate of the GTO thyristor reverse bias during its off state. V_PGoley is charged from high level to low level to turn off S_2. Since S_2 is turned off, I_e is decreased. As a result, the drive circuit power is saved. Referring now to FIG. 13 there is an ETO thyristor current sensing and over-current detector circuit diagram according to a ninth embodiment of the invention. When the ETO thyristor’s emitter switch S_1-S_m are on, it acts as a small linear resistor. So the voltage drop across S_1-S_m drain and source reflects the current through it. The temperature of the junction of ETO thyristor’s emitter switch S_1-S_m is taken into account to eliminate the temperature effect on the on resistance of S_1-S_m. The PWM signal whose duty cycle is proportional to voltage across the S_1-S_m drain and source and whose cycle is related to the junction temperature of S_1-S_m. The PWM signal is send out by optical signal. The voltage across S_1-S_m drain and source is also used for ETO thyristor’s over current protection. If this voltage is high enough, a over-current warning will be triggered. In the depicted example, the current sensing circuit includes a temperature sensor 2, PWM waveform generator 6, a resistor R_5, a switch 5, and optic transmitter 7. The relationship among the voltage, current and temperature of switch S_1 can be expressed by the following equation:

\[I = \frac{V}{V_{PG} + \alpha \times T} \]

where I is the current, V is the voltage, and V_{PG} and \alpha are the parameters related to the thyristor’s emitter switch S_1-S_m. The temperature sensor 2 gets the temperature signal of thyristor’s emitter switch S_1-S_m and sends it to the PWM generator 6. The voltage V of the drains of thyristor’s emitter switch S_1-S_m are also detected by the PWM generator 6. The PWM generator 6 generates a PWM signal whose duty cycle is proportional to voltage V and whose cycle is related to the temperature of S_1-S_m. PWM signal is sent out by optic transistor 7. And the current information can be used for current control. Switch 5 turns on when ETO thyristor turn off. This function makes sure V=0 when the ETO thyristor is off.

In the depicted example, the over-current detector circuit includes temperature sensor 2, voltage reference 4, calculation circuit 3, comparator 8 and optic transmitter 9. The over current trigger value can be set by the calculation circuit 3 as V_{PG}+\alpha KT. If voltage V is bigger than V_{PG}+\alpha KT, the over current signal can be generated by comparator 9. The over current signal can be received by the ETO thyristor’s control circuit 10 to turn off the ETO thyristor immediately. It can also be sent out to the outside controller by optic transmitter 9.

Referring now to FIG. 14 there is an assembly drawing schematically illustrating the housing of an ETO thyristor according to a tenth embodiment of the invention. Also Referring now to FIG. 15 there is a cross section view schematically illustrating the housing of an ETO thyristor also according to a tenth embodiment of the invention. The housing includes a GTO thyristor 100, a printed circuit board (PCB) 104, the emitter switch 105, a case 109, an insulator 107 and metal plates 101, 102, 103, 106, and 108. The print circuit board (PCB) 104, metal plate 106, and metal plate 103 are assembled together by screws. A big hole is cut from the PCB 104 to let the cathode of the GTO thyristor 100 come into direct contact with metal plate 106. The emitter switch 105, which are many N-channel MOSFETs connected in parallel, are packaged in a circle along the hole. The drains of the emitter switch 105 are connected to the cathode of the GTO thyristor 100 by PCB 104 and metal plate 106. In this structure, the drains of the N-MOSFET are very close to the metal plate 104. The heat generated by the emitter switch 105 will be easily conducted to metal plate 104, and the stray inductance between the GTO thyristor 100 and the emitter switch 105 is minimized. The emitter switch 105 can also be put on both sides of PCB 104 to increase the number of emitter switch so that the current handling capability can be improved. The sources of the emitter switch 105 are connected with the metal plate 108 through PCB 104, so the metal plate 108 acts as the ETO thyristor’s cathode. Metal plates 108 and 106 are insulated from each other by insulator 107. Metal case 109 is used to support the whole device. The middle part is cut off to expose the metal plate 108 out. So the heat can transfer directly from metal plate 108 to the heat sink outside.
While the invention has been described in terms of preferred embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:

1. An emitter turn-off (ETO) thyristor comprising:
 a gate turn-on (GTO) thyristor having an anode, a cathode and a gate;
 a first switch, consisting of a number of paralleled metal oxide semiconductor field effect transistors (MOSFETs), having a drain, a source and a gate, the drain of the first switch being connected to the cathode of the GTO thyristor; and
 a second switch connected between the gate of the GTO thyristor and the source of the first switch, said second switch having a control electrode, the anode of the GTO thyristor and the source of the first switch serving as the anode and the cathode, respective, of the ETO thyristor, the ETO thyristor having four control electrodes, the gate of the GTO thyristor, the control electrode of the second switch, the gate of the first switch, and the cathode of the GTO thyristor.

2. The ETO thyristor of claim 1, wherein the second switch consists of a number of paralleled MOSFETs and has a source, drain and a gate, the gate being said control electrode, further comprising a diode which is connected in series with the second switch, the diode serving to block current from the source of the first switch to the anode of the GTO thyristor.

3. The ETO thyristor of claim 2, wherein to turn off the ETO thyristor, the first switch is turned off and the second switch turned on, and to turn on the ETO thyristor, the first switch is turned on, the second switch is turned off, and current is injected into the gate of the GTO thyristor.

4. The ETO thyristor of claim 3, wherein to turn off the ETO thyristor, a positive clamp voltage is further applied between the cathode and the gate of the GTO thyristor to make the gate of the GTO thyristor reverse bias, and to turn on the ETO thyristor, the positive clamp voltage between cathode and gate of the GTO thyristor is further removed.

5. The ETO thyristor of claim 3, further comprising: a current direction detector connected to the gate of the GTO thyristor and the source of the first switch; a diode connected anti-parallel with the ETO thyristor; and a control circuit connected to the gates of the first and second switches and responsive to the current direction detector and, if the current direction detector detects that the diode is conducting current, keeping the ETO transistor in an off state.

6. The ETO thyristor of claim 2, further comprising a drive circuit comprising:
 a current source circuit connected between the source of the first switch and the gate of the GTO thyristor;
 a pulse current injection and voltage clamp circuit connected between the gate and the cathode of the GTO thyristor;
 a current direction detector having first and second inputs respectively connected to the gate of the GTO thyristor and the source of the first switch, the current direction detector further having an output; and
 a control circuit connected to the output of the current direction detector and providing control signals to the first and second switches, the current source circuit and the pulse current injection and voltage clamp circuit.

7. The ETO thyristor of claim 6, wherein the current source circuit comprises: a first voltage source; a second diode; a PNP power transistor having an emitter, collector and base, the first voltage source being connected between the source of the first switch and the emitter of the PNP power transistor and the second diode being connected between the collector of the PNP power transistor and the gate of the GTO thyristor; first and second resistors connected in series between the base of the PNP power transistor and the source of the first switch; and a control transistor having an emitter, a collector and a base, the emitter and collector of the control transistor being connected across one of said first and second resistors.

8. The ETO thyristor of claim 6, wherein the voltage clamp circuit comprises:
 a second voltage source having a positive junction and a negative junction; a MOSFET having a source, a drain and a gate; and a third diode, the second voltage source, the MOSFET and the third diode being connected in series between the source of the first switch and the cathode of the GTO thyristor.

9. The ETO thyristor of claim 6, wherein the current direction detector comprises:
 a comparator having positive input connected to the gate of the GTO thyristor and negative input connected to the source of the first switch and, the comparator’s output changing to high level if the voltage of the GTO thyristor’s gate is lower than that of the first switch’s source, indicating that the ETO thyristor’s anti-parallel diode is conducting current.

10. The ETO thyristor of claim 1, wherein the second switch consists of a number of paralleled insulated gate bipolar transistors and has a collector, an emitter and a base, the base being the control electrode of the second switch, the collector of the second switch being connected to the gate of the GTO thyristor, and the emitter of the second switch being connected to the source of the first switch.

11. The ETO thyristor of claim 10, wherein to turn off the ETO thyristor, the first switch is turned off and the second switch turned on, and to turn on the ETO thyristor, the first switch is turned on, the second switch is turned off, and current is injected into the gate of the GTO thyristor, the second switch blocking current from the source of the first switch to the anode of the GTO thyristor when the voltage of source of the first switch is higher than the voltage of the anode of the GTO thyristor.

12. The ETO thyristor of claim 11, wherein to turn off the ETO thyristor, a positive clamp voltage is further applied between cathode and gate of the GTO thyristor to make the gate of the GTO thyristor reverse bias, and to turn on the ETO thyristor, the positive clamp voltage between cathode and gate of the GTO thyristor is removed.

13. The ETO thyristor of claim 11, further comprising:
 a current direction detector connected to the gate of the GTO thyristor and the source of the first switch; a diode connected anti-parallel with the ETO thyristor; and a control circuit connected to the gates of the first and second switches and responsive to the current direction
detector and, if the current direction detector detects that the diode is conducting current, keeping the ETO thyristor in an off state.

14. The ETO thyristor of claim 10, further comprising a drive circuit comprising:
 a current source circuit connected between the source of the first switch and the gate of the GTO thyristor;
 a pulse current injection and voltage clamp circuit connected between the gate and the cathode of the GTO thyristor;
 a current direction detector having first and second inputs respectively connected to the gate of the GTO thyristor and the source of the first switch, the current direction detector further having an output; and
 a control circuit connected to the output of the current direction detector and providing control signals to the first and second switches, the current source circuit and the pulse current injection and voltage clamp circuit.

15. The ETO thyristor of claim 14, wherein the current source circuit comprises:
 a first voltage source;
 a first diode having a cathode and an anode;
 a PNP power transistor, having an emitter, collector and base, the first voltage source being connected between the source of the first switch and the emitter of the PNP power transistor, the collector of the PNP power transistor being connected to the cathode of the first diode, and the anode of the first diode being connected to the gate of the GTO thyristor;
 first and second resistors connected in series between the base of the PNP power transistor and the source of the first switch; and
 a control transistor having an emitter, a collector and a base, the emitter and collector of the control transistor being connected across one of said first and second resistors.

16. The ETO thyristor of claim 14, wherein the voltage clamp circuit comprises:
 a second voltage source;
 a MOSFET, having a source, a drain and a gate; and
 a second diode, the second voltage source, the MOSFET and the second diode being connected in series between the source of the first switch and the cathode of the GTO thyristor.

17. The ETO thyristor of claim 14, wherein the current direction detector comprises:
 a comparator having positive input connected to the gate of the GTO thyristor and negative input connected to the source of the first switch and, the comparator's output changing to high level if the voltage of the GTO thyristor's gate is lower than that of the first switch's source, indicating that the ETO thyristor's anti-parallel diode is conducting current.

18. The ETO thyristor of claim 1, wherein the second switch consists of a series circuit of a switch and a capacitor, the gate of the switch being the control electrode of the second switch, the second switch being connected in parallel with the switch, and the second diode connected in parallel with the capacitor.

19. The ETO thyristor of claim 18, wherein to turn off the ETO thyristor, the first switch is turned off and the second switch is turned off, current going out of the gate of the GTO thyristor charges the capacitor through the second switch, and to turn on the ETO thyristor, the first switch is turned on and the second switch is turned on, the capacitor providing turn on current to inject into the gate of the GTO thyristor, the second diode providing a current free wheeling path when the capacitor is discharged.

20. The ETO thyristor of claim 19, wherein to turn off the ETO thyristor, a positive clamp voltage is further applied between the cathode and gate of the GTO thyristor to make the gate of the GTO thyristor reverse bias, and to turn on the ETO thyristor, the positive clamp voltage between the cathode and gate of the GTO thyristor is removed, the second switch blocking current from the source of the first switch to the anode of the GTO thyristor when the voltage of the source of the first switch is higher than the voltage of the anode of the GTO thyristor.

21. The ETO thyristor of claim 19, further comprising:
 a current direction detector connected to the gate of the GTO thyristor and the source of the first switch;
 a diode connected anti-parallel with the ETO thyristor; and
 a control circuit connected to the gates of the first and second switches and responsive to the current direction detector and, if the current direction detector detects that the diode is conducting current, keeping the ETO thyristor in an off state.

22. The ETO thyristor of claim 18, further comprising a drive circuit comprising:
 a current source circuit connected between the source of the first switch and the gate of the GTO thyristor;
 a voltage clamp circuit connected between the gate and the cathode of the GTO thyristor;
 a current direction detector having first and second inputs respectively connected to the gate of the GTO thyristor and the source of the first switch, the current direction detector further having an output; and
 a control circuit connected to the output of the current direction detector and providing control signals to the first and second switches, the current source circuit and the pulse current injection and voltage clamp circuit.

23. The ETO thyristor of claim 22, wherein the current source circuit comprises:
 a first voltage source;
 a third diode having a cathode and an anode;
 a PNP power transistor, having an emitter, collector and base, the first voltage source being connected between the source of the first switch and the emitter of the PNP power transistor, the collector of the PNP power transistor being connected to the cathode of the third diode, and the anode of the third diode being connected to the gate of the GTO thyristor;
 first and second resistors connected in series between the base of the PNP power transistor and the source of the first switch; and
 a control transistor having an emitter, a collector and a base, the emitter and collector of the control transistor being connected across one of said first and second resistors.

24. The ETO thyristor of claim 22, wherein the voltage clamp circuit comprises:
 a second voltage source;
 a MOSFET, having a source, a drain and a gate; and
 a fourth diode, the second voltage source, the MOSFET and the fourth diode being connected in series between the source of the first switch and the cathode of the GTO thyristor.
25. The ETO thyristor of claim 1, further comprising:
a series circuit of a first diode and a capacitor, and this
series circuit being connected in parallel with the first
switch.
26. The ETO thyristor of claim 25, further comprising:
a precharge circuit connected to the anode of the GTO
thyristor and one terminal of the capacitor, charging the
capacitor to a certain voltage when the ETO thyristor
being first powered on.
27. The ETO thyristor of claim 25, wherein to turn off the
ETO thyristor, the second switch is turned on and the first
switch is turned off, the voltage across the first switch being
clamped by the capacitor, and to turn on the ETO thyristor,
the second switch is turned off, and current is injected into
the gate of the GTO thyristor.
28. The ETO thyristor of claim 27, wherein to turn on the
ETO thyristor, the voltage across the capacitor is measured
first, and the turn-on of the first switch will be delayed in
order to charge the capacitor by ETO thyristor’s anode
current if the voltage across the capacitor is low than a first
voltage value, and the first switch will not be turned on until
the voltage across the capacitor reaches a second voltage
value, which is higher than the first voltage value.
29. The ETO thyristor of claim 28, wherein during the
ETO thyristor’s on-state, the voltage across the capacitor is
measured, and the first switch will be turned off in order to
charge the capacitor by ETO thyristor’s anode current if the
voltage across the capacitor is lower than a first voltage value,
and the first switch will not be turned on until the voltage
across the capacitor reaches a second voltage value, which
is higher than the first voltage value.
30. The ETO thyristor of claim 27, wherein to turn off the
ETO thyristor, the positive clamp voltage is further applied
between the cathode and the gate of the GTO thyristor to
make the gate of the GTO thyristor reverse bias, and to turn
on the ETO thyristor, the positive clamp voltage between
cathode and the gate of the GTO thyristor is further
removed.
31. The ETO thyristor of claim 27, further comprising:
a current direction detector connected to the anode of the
ETO thyristor and the source of the first switch;
a second diode connected anti-parallel with the ETO
thyristor; and
a control circuit connected to the gates of the first and
second switches and responsive to the current direction
detector and, if the current direction detector detects
that the second diode is conducting current, keeping the
ETO thyristor in an off state.
32. The ETO thyristor of claim 25, further comprising a
drive circuit comprising:
a current source circuit connected between the gate and
the cathode of the GTO thyristor;
a pulse current injection and voltage clamp circuit con-
ected between the gate and the cathode of the GTO
thyristor; and
a current direction detector having first and second inputs
respectively connected to the anode of the GTO thy-
ristor and the source of the first switch, the current
direction detector further having an output; and
a capacitor voltage precharge circuit connected to the
anode of the GTO thyristor and one terminal of the
capacitor; and
a zero diode connected in parallel with the capacitor to
limit the voltage across the capacitor; and
a voltage detector to measure the voltage across the
capacitor; and
a control circuit connected to the output of the current
direction detector and providing control signals to the
first and second switches, the current source circuit and
the pulse current injection and voltage clamp circuit;
and
a DC—DC converter having two input terminals con-
nected to the two terminals of the capacitor respectively, the DC—DC converter providing power for
the control circuit, current source circuit, the pulse
current injection, voltage detector, and voltage clamp
circuit.
33. The ETO thyristor of claim 32, wherein the current
source circuit comprises:
a first voltage source;
a third diode;
a PNP power transistor having an emitter, collector and
base, the first voltage source being connected between
the source of the first switch and the emitter of the PNP
power transistor; and the third diode being connected between
the collector of the PNP power transistor and the
gate of the GTO thyristor;
the first and second resistors connected in series between
the base of the PNP power transistor and the source of the
first switch; and
a control transistor having an emitter, a collector and a
base, the emitter and collector of the control transistor
being connected across one of said first and second
resistors.
34. The ETO thyristor of claim 32, wherein the voltage
clamp circuit comprises:
a second voltage source having a positive junction and a
negative junction;
a MOSFETs having a source, a drain and a gate; and
a fourth diode, the second voltage source, the MOSFET
and the fourth diode being connected in series between
the source of the first switch and the cathode of the
ETO thyristor.
35. The ETO thyristor of claim 32, wherein the current
direction detector comprises:
a series circuit of two resistors connected to the anode of
the GTO thyristor and the source of the first switch,
serving as the voltage divider;
a first comparator having the output connected to the
control circuit, and having positive and negative inputs
connected to the two terminals of one of the resistors,
the first comparator’s output changing to high level if
the voltage of the GTO thyristor’s anode is lower than
that of the first switch’s source, indicating that the ETO
thyristor’s anti-parallel diode is conducting current.
36. The ETO thyristor of claim 32, wherein the voltage
detector comprises:
a second comparator having the output connected to the
control circuit, and having the positive input connected
to the capacitor’s one terminal, and having the negative
input connect to a first voltage reference; and
a third comparator having the output connected to the
control circuit, and having the positive input connected
to the capacitor’s one terminal, and having the negative
input connect to a second voltage reference, which is
lower that the first voltage reference.
37. The ETO thyristor of claim 1, further comprising a
current sensing and over-current detector circuit connected
between the cathode of the GTO thyristor and the source of
the first switch.
38. The ETO thyristor of claim 37, wherein the current
sensing and over-current detector circuit comprises:
a temperature sensor proximate to the drain of the first switch and generating a first voltage signal proportional to a sensed temperature T;

a voltage reference providing a reference voltage \(V_{r_{ref}} \);

a calculation circuit receiving the first voltage signal and the reference voltage and calculating \(V_{r_{ref}} + k \times T \), where \(k \) is a parameter related to the first switch; and

a pulse width modulated (PWM) waveform generator connected to receive an output from the temperature sensor and also connected to the drain of the first switch to detect a voltage \(V \) of the drain of the first switch, the PWM waveform generator generating a PWM signal whose duty cycle is proportional to voltage \(V \) and whose cycle is proportional to \(T \).

39. The ETO thyristor of claim 38, further comprising an optic transmitter connected to an output of the PWM waveform generator.

40. The ETO thyristor of claim 39, further comprising:

a comparator having first and second inputs respectively connected to the output of the calculation circuit and to the drain of the first switch, the comparator further generating an output when an over current condition is detected when the voltage \(V \) is larger than \(V_{r_{ref}} + k \times T \);

a control logic circuit responsive to the output of the comparator indicating an over current condition to turn off the ETO thyristor immediately.

41. The ETO thyristor of claim 39, further comprising a second optic transmitter condition output from the comparator.

42. The ETO thyristor of claim 1, further comprising a housing for the ETO thyristor.

43. The ETO thyristor of claim 42, wherein the housing comprises:

a plurality of MOSFETs connected in parallel constituting the first switch being packaged in a printed circuit board (PCB).

44. The ETO thyristor of claim 43, wherein the housing comprises:

a PCB having a large hole for receiving the cathode of the GTO thyristor;

a first metal plate on a first side of the PCB in contact with the cathode of the GTO thyristor;

a second metal plate on a second side of the PCB and encircling the GTO thyristor, the PCB, the first metal plate and the second metal plate being assembled by screws; and

plurality of MOSFETs connected in parallel constituting the first switch being packaged in a circle about the hole in the PCB, drains of the MOSFETs being connected to the cathode of the GTO thyristor the PCB and the first metal plate, so that heat generated by the MOSFETs will be easily conducted to the first metal plate and stray inductance between the GTO thyristor and the MOSFETs is minimized.

45. The ETO thyristor of claim 43, wherein the MOSFETs mounted on both sides of the PCB to increase the number of switches so that the current handling capability is improved.

46. The ETO thyristor of claim 44, further comprising:

a third metal plate to which sources of the MOSFETs are connected through the PCB; and

an insulator between the first metal plate and the third metal plate, the third metal plate acting as the ETO thyristor’s cathode.

* * * * *