GENERALIZED CANCELLATION OF INDUCTOR WINDING CAPACITANCE

Inventors: Shuo Wang, Blacksburg, VA (US); Fred C. Lee, Blacksburg, VA (US)

Assignee: Virginia Tech Intellectual Properties, Inc., Blacksburg, VA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 11/850,762
Filed: Sep. 6, 2007

Prior Publication Data

Related U.S. Application Data
Continuation-in-part of application No. 11/552,292, filed on Oct. 24, 2006.

Int. Cl.
H03H 7/00 (2006.01)
H01F 30/00 (2006.01)
H01F 30/16 (2006.01)

U.S. Cl. 333/177; 336/69; 336/188
Field of Classification Search 333/185, 333/181, 12, 177; 336/188, 229, 69

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

ABSTRACT

An inductor device or filter such as an electromagnetic interference (EMI) filter which includes an inductor provides cancellation of parasitic capacitance of the inductor and extends high frequency performance of the inductor or filter by using an inductor network (a special case being split windings) and including capacitors to couple signals corresponding to those which are passed by the equivalent parallel capacitance of an inductor of a network of inductors such as in a multi-phase power supply of voltage converter to another inductor terminal, ground or an inductor in the ground return path. Cancellation of parasitic capacitance is provided for differential mode and common mode windings where the windings may be either inductively coupled or not. Forming the windings as a bifilar winding to increase coupling coefficient further improves performance and allows cancellation (as distinct from parasitic capacitance reduction) and avoidance of resonance in circuits in which an inductor is not permitted in the ground return path. Different inductance values and turn ratios of any or all inductors of the network, including multi-phase networks, may be accommodated.

20 Claims, 14 Drawing Sheets
Figure 1F

\[C_A = \frac{2EPC_1EPC_2 + EPC_1C_{23} + C_{14} + C_{23}}{EPC_1 + EPC_2 + EPC_1C_{14} + C_{23}} \]

\[C_B = \frac{2EPC_1EPC_2 + EPC_1C_{14} + C_{14} + C_{23}}{EPC_1 + EPC_2 + EPC_1C_{14} + C_{23}} \]
M is mutual inductance
n is turn ratio

\[C = \frac{\left(\sqrt{k+1}\right)^2}{\sqrt{k}} \]

\[EPC = \frac{(n+1)^2}{n} \]

\[\frac{\sqrt{kC}}{\sqrt{k+1}} = n = \sqrt{k} \]

\[\frac{C}{\sqrt{k+1}} \]

Figure 2C
\[f_0 = \frac{1}{2\pi \sqrt{L_k C_1}} \]

The graph shows the frequency response with and without cancellation. The equation \(f_0 \) is introduced by \(L_k \).

Figure 4
M is mutual inductance
n is turn ratio

\[M = \sqrt{kL} \]

\[n = \sqrt{k} \]

\[C = \frac{(\sqrt{k} + 1)^2}{\sqrt{k}} \]

\[EPC = \frac{(n + 1)^2}{n} \]

Figure 8
GENERALIZED CANCELLATION OF INDUCTOR WINDING CAPACITANCE
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 11/552,292, filed Oct. 24, 2006, which is assigned to the assignee of the present invention and the entire disclosure thereof is hereby incorporated by reference as if the disclosure that application were fully set forth herein.

STATEMENT OF GOVERNMENT INTEREST

The present invention was made in connection with National Science Foundation grant EEC 9731677. Therefore, the U.S. Government may have certain rights in this invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to electrical inductors, principally in filter applications, and, more particularly, to the improvement of performance of filter inductors at high frequencies, especially in multi-phase power supplies and voltage converters.

2. Description of the Prior Art

Resistance, capacitance and inductance are three fundamental electrical properties which are exhibited to a greater or lesser degree by any structure capable of carrying a current. Electrical elements are often identified by one of these properties which is dominant in the electrical behavior of that element although the element may also exhibit parasitic properties which may be significant or even dominant under particular conditions. An inductor is thus a basic and fundamental electrical element which is constructed to develop a voltage across it which opposes a change in current through it; a function generally achieved by one or more coils of a conductor, referred to as a winding. Thus, inductors are often employed as series filter elements and in resonant circuits. Power supplies and electromagnetic interference (EMI) suppression filters are examples of types of circuits in which the use of inductors is common.

As alluded to above, however, all practical embodiments of electrical devices, regardless of the characteristic intended to be dominant, will exhibit some other parasitic characteristics to some degree. The degree to which such parasitic characteristics are reduced in a given device, generally by careful control of structural dimensions and materials, is generally a primary indicator of the quality thereof. In inductors, a principal parasitic characteristic is referred to as the equivalent parallel winding capacitance or, simply, equivalent parallel capacitance (EPC) which can be modeled as a small capacitor connected in parallel with a winding of the inductor. Any practical inductor will also exhibit an equivalent parallel resistance (EPR) which can be modeled as a similar connection of a resistor in parallel with the inductor.

Unfortunately, such a parasitic capacitance provides substantially the opposite effect as that desired from an inductor and such effect increases with increase of frequency; often encountered in current circuit designs such as microprocessors. Specifically, for an ideal inductor having inductance L, the impedance at a frequency, f, is given by the equation

\[Z = \frac{1}{\sqrt{2\pi f L}} \]

which thus increases with increasing frequency. However, the EPC between turns and between each turn and between respective windings of a practical inductor at very high frequencies where the EPC dominates the effect of the inductance, the impedance thus becomes

\[Z = \frac{1}{\sqrt{2\pi f \text{EPC}}} \]

which decreases with increasing frequency and may therefore severely compromise the desired and intended filter and/or protective function of the inductor by providing a low impedance parallel path for high frequency signal components such as are encountered in electromagnetic interference (EMI) and engendered in power supply or power converter switching and by digital circuit loads such as microprocessors. Thus, it is desirable to reduce EPC as much as possible, particularly since a small EPC value is generally considered to be a strong indicator of the quality of the inductor element. However, to date, reductions in EPC by control of materials and device geometry and other techniques at the present state of the art are generally limited to about 30%, leaving a significant value of EPC which continues to limit the working frequency of inductors for providing a filter function while requiring arrangements, structures and designs of substantial complexity and criticality.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide a technique for cancelling a relatively large portion of the EPC of an inductor to extend the working frequency by a factor of 10-100.

It is another object of the invention to provide an inductor structure which facilitates provision of an inductor structure which may or may not have parasitic capacitance cancellation circuitry included therein which provides an increased inductive coupling between inductor windings and reduced leakage to improve high frequency performance of the inductor while increasing the degree of cancellation of parasitic capacitance which may be achieved.

It is a further object of the invention to provide techniques and circuitry by which EPC may be cancelled in any inductor regardless of application and/or provided increased design flexibility in choice of values of electrical components used in doing so.

In order to accomplish these and other objects of the invention, inductor device and a filter having substantial cancellation of parasitic capacitance is provided comprising an inductor network having windings having a parasitic capacitance, and capacitors connected to terminals of the windings to couple currents passed by one winding to a terminal of another winding or an inductor in a ground return path.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:

FIGS. 1A and 1B are a circuit schematic diagram and an equivalent circuit thereof, respectively, of the invention as applied to a differential mode (DM) inductor where the inductor windings are not inductively coupled with each other.

FIGS. 1C, 1D and 1E illustrate a two-winding inductor on a single toroidal core and an equivalent circuit thereof (FIGS. 1C and 1D indicating currents in differential mode (DM) and common mode (CM), respectively) which will be useful in understanding the invention in all its aspects.
FIG. 1F depicts a generalization of the invention as discussed with reference to FIGS. 1A-1E to the case where the EPCs of the inductor windings may be either equal or unequal.

FIGS. 2A and 2B are circuit schematic diagrams corresponding to the EPC cancellation strategy for EPC-Cx/2 and EPC-Cx/2, respectively.

FIG. 2C illustrates a generalization of an embodiment of the invention to accommodate coupled windings of unequal numbers of turns.

FIGS. 3A and 3B are circuit schematic diagrams of the application of the invention to common mode (CM) inductor windings where an inductor in the ground path is and is not allowed, respectively.

FIG. 4 is a graphical comparison of filtering performance with and without EPC cancellation for CM inductors without an inductor in the ground path in accordance with a known proposed solution for EPC cancellation.

FIG. 5 illustrates a proposed winding strategy to increase the coupling coefficient of two winding halves in accordance with the invention.

FIG. 6 is a graphical comparison of filter performance with and without EPC cancellation using the inductor winding strategy of FIG. 5, and FIGS. 7 and 8 illustrate extension of the principles of the invention to inductor networks such as multi-phase filters, power supplies or voltage converter arrangements.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION

Referring now to the drawings, and more particularly to FIG. 1A, there is shown a schematic circuit diagram including differential mode (DM) inductor windings (which will be further discussed and distinguished from common mode (CM) windings below in connection with FIGS. 1C and 1D) in accordance with the basic principles of the invention and a first preferred embodiment thereof. The two DM inductors illustrated can be as separate components which may or may not be inductively coupled or one integrated component built on, for example, a single core where the windings are necessarily inductively coupled (unless they are the leakage of common mode (CM) inductions). It is assumed for purposes of an initial discussion of the basic principles of operation of the invention that the DM inductors are identical, however they are configured, so that their inductances and parasitic parameters are the same. It should be noted that EPC cancellation in any single inductor may be achieved in accordance with the invention by forming a separate case of an inductor network comprising a split winding and then performing cancellation in accordance with either DM or CM windings of that split winding network, as will be discussed below, generally depending on the nature of the magnetic coupling and capacitance between windings, Cx, that most closely characterizes the electrical properties of the particular inductor. A generalization of implementation of the invention to cases where the DM inductors are different will also be provided below following the discussion of the basic principles of the invention.

In connection with FIGS. 1C and 1D, as is well-understood in the art, DM and CM inductors are related by the direction of winding on the core relative to current direction in the windings although commonly used nomenclature generally refers to the relative direction of current at the ports. For example, if two windings generate magnetic flux in the same direction (e.g., clockwise in FIG. 1D) with common mode (CM) current, the inductor is referred to as a CM inductor.

Conversely, if the two windings generate magnetic flux in the same direction (clockwise in FIG. 1C) with differential mode (DM) current, the inductor is referred to as a DM inductor. If there is no magnetic coupling between the windings, the windings may be considered to be either DM or CM windings for purposes of the practice of the present invention. Since DM and CM current have been defined as illustrated by arrows in FIG. 1C and 1D, respectively, the factor determining DM and CM inductors is thus the relative winding direction of the two windings of a split inductor or windings of inductors in an inductor network.

FIGS. 1C and 1D also illustrate the three kinds of parasitic capacitance which may be present for two coupled (toroidal) inductors; a construction which is preferred but not critical for practical implementations of the invention and which can be wound for either differential or common mode operation as is indicated, for clarity, by current direction in the respective windings (e.g., assuming the winding direction to be the same): turn-to-turn capacitance, Cxx, turn-to-core capacitance, Cxc, and winding-to-winding capacitance, Ccc. (While Cxx, Cxc, and Ccc can be and often are lumped together in the value of EPC for purposes of understanding the following discussion, only Cxx and Cxc will be considered as lumped together as EPC since the winding-to-winding capacitance, Ccc, is generally denoted hereinafter as Cxx may or may not be present (i.e., may be negligible) in a given split winding inductor or inductor network and, since it generally reduces EPC if non-negligible, is preferably compensated in a somewhat different manner than the lumped parasitic capacitances Cxx and Cxc, sometimes referred to as turn-by-turn capacitance as will be discussed below.)

The equivalent circuit of the two toroidal DM windings of FIG. 1C is shown in FIG. 1E. A detailed analysis of the equivalent circuit of FIG. 1E is provided in “Design of Inductor winding capacitance cancellation for EMI Suppression” by Shuo Wang et al., published in the 37th IEEE Power Electronics Specialists Conference, pp. 2734-2740, Jun. 18-22, 2006, which is hereby fully incorporated by reference.

Specifically, as shown in FIG. 1A, there are two inductors each having an inductance Lind and which are assumed to be not inductively coupled to each other. If the two inductors are not inductively coupled, it can be assumed that they are not in sufficient proximity to be significantly capacitively coupled and Cxx (or Cxc) which will be discussed below in connection with FIGS. 2A and 2B can be neglected. Each inductor thus includes a parasitic EPC and EPR as illustrated in parallel with the inductor windings. In accordance with the invention, two small capacitors, Cx, having a capacitance equal to EPC are diagonally connected to the DM inductors. By employing the diagonal connection shown (a method which emulates an electric field coupling between two capacitors sometimes referred to as positive mutual capacitance), the high frequency components input to and passed by the EPC of each DM inductor are coupled to the other DM inductor in a manner to provide cancellation of currents and thus effective cancellation of parasitic capacitance. Thus, the equivalent circuit is as illustrated in FIG. 1B which has the same network parameters such as Z-matrices as the circuit of FIG. 1A and thus has the same characteristics on two ports. FIG. 1B also clearly indicates that the resultant network is actually a so-called "pi" (π) type EMI filter without the effects of the EPC of the respective DM inductors up to extremely high frequencies.

If, on the other hand, the two DM inductors are inductively coupled with each other, the EPC cancellation in accordance with the invention is somewhat more complicated as will now be discussed with reference to FIGS. 2A and 2B. The com-
plication arises from the fact that there is parasitic capacitance, C_{p}, between the two windings which makes the equivalent winding capacitance equal to the difference between the winding capacitance EPC of one winding and half of the winding capacitance (i.e. C_{p}/2) between the two windings. If the difference is positive, two capacitors, with the capacitance value EPC+C_{p}/2 are connected diagonally to the two windings as in the embodiment illustrated in FIG. 1A, discussed above, as specifically illustrated in FIG. 2A. The equivalent circuit formed corresponds to that of FIG. 1B except for the capacitance values which are EPC–C_{p}/2 rather than simply EPC. If the difference is negative, two capacitors each having a capacitance value of C_{p}/2–EPC are connected in parallel with the respective parallel inductor windings as shown in FIG. 2B (a method which emulates an electric field coupling two capacitors sometimes referred to as negative mutual capacitance). That is, while it would appear that additional capacitance in parallel should aggravate the problem of high capacitance effects of capacitance in parallel with the inductor, if EPC–C_{p}/2 is negative because C_{p}/2 is greater than EPC, EPC will actually be over-compensated by C_{p}, and, counter-intuitively, positive capacitance of C_{p}/2–EPC parallel to EPC may more closely approximate cancellation because C_{p} is effectively negative as discussed in detail in the above-mentioned Wang et al. article; requiring additional capacitance in parallel with EPC for more accurate cancellation. It should be noted that where C_{p}/2 is greater than EPC, there is no parallel resonance between the inductor 2I and the capacitance (EPC–C_{p}/2) since the total parasitic capacitance is negative and thus overcompensates EPC. The above analysis and schematic and equivalent circuits of FIGS. 2A and 2D is also fully applicable to cancellation of parasitic capacitance in CM windings.

In the above discussion, it was assumed, for simplicity, that the DM inductors were identical (thus having equal EPC) and the diagonally connected cancellation capacitors are correspondingly equal, which may not be the case in a practical implementation. That is, as illustrated in FIG. 1F, in accordance with the basic principles of the invention, cancellation of winding capacitance can also be achieved where the EPC's of the windings are unequal as long as the condition

\[C_{p} = \frac{1}{2} \text{EPC} \times \text{EPC} \]

is met. The schematic diagram of the circuit similar to FIG. 1A but with different reference characters corresponding to this condition. The equivalent circuit similar to FIG. 1B with the resulting values of C_{p} and C_{p} provided in FIG. 1F. The same principle applies to two DM inductors on one core depending on the relationship of the lumped winding capacitance (EPC as defined herein) and the capacitance between the two windings as discussed above in connection with FIGS. 2A and 2B.

Further, in regard to cancellation of parasitic capacitance in common mode (CM) windings (where a mutual inductance between the windings will necessarily exist), a generalization may be made for any turns ratio of the windings which is not equal to one which may be found advantageous in particular applications or embodiments of the invention which is similar to that described above for coupled DM windings. Specifically, as illustrated in FIG. 2C, a schematic similar to the upper or lower portion of the equivalent circuit of FIG. 2B is shown (but omitting the cancellation capacitor corresponding to the parasitic capacitance C_{p} which can be neglected since no current will flow in such parasitic capacitors because, in common mode windings, both terminals thereof will see the same voltage). Assuming a mutual inductance, M, between the windings and a ratio of inductances, k, developed by a turns ratio, n=\sqrt{k}, the capacitance C required to provide cancellation of parasitic capacitance is given by

\[C = (\frac{n+1}{n})^2 \times \text{EPC} \]

for any turns ratio in either the top or bottom portion of FIG. 2B. The benefit of this generalization is that the capacitances on the two sides in a resultant network such as that of FIG. 2B can be independently controlled when different values of C may be desirable in particular applications.

Additionally, for a common mode (CM) inductor windings (e.g. where the windings of FIG. 1D, or other inductor structure, are wound for common mode conduction), it should be noted, as alluded to above, that no current will flow in parasitic (discretely depicted) capacitances C_{p} since both: terminals of each winding-to-winding capacitance C_{p} will see the same voltage since the current at the respective terminals of each port are the same. Thus the winding-to-winding capacitance C_{p} can be neglected. If an inductor is allowed in the ground path, the same basic principles of the invention described above in regard to FIGS. 1A or 2A (depending on whether or not there is inductive coupling between the common mode inductors and the inductor in the ground path) can be employed as illustrated in FIG. 3A. Again, the implementation is very simple and requires only two small capacitors such as ceramic capacitors as in the previously described implementations. Essentially the inductor in the ground path is used as a CM inductor which may or may not be inductively coupled with the CM inductors and capacitance cancellation carried out as described above with cross connections to the inductor in the ground path.

If an inductor is not allowed in the ground path, as is generally the case, a parasitic capacitance reduction (as distinct from cancellation) effect can be achieved by providing a capacitance connection of 4EPC to the ground path at the center taps of each of the common mode inductors as shown in FIG. 3B. This known approach is discussed in detail in “Improving the Characteristics of Integrated EMI Filters by Embedded Conductive Layers” by R. Chen et al., IEEE Transactions, Power Electronics, Vol. 20, Issue 3, May, 2004, pp. 611-619, which is hereby fully incorporated by reference.

However, this known technique does not provide a complete solution to the EPC problem as illustrated in FIG. 4 since, while it may provide reduction of effects of parasitic capacitance and modestly expand the usable frequency range of an inductor, it does not provide cancellation of parasitic capacitance effects and does not expand the usable frequency range of an inductor to the extent provided by the present invention in accordance with an additional aspect thereof. Specifically, as is evident from FIG. 4, the circuit of FIG. 3B (for an inductance of the two CM windings of about 2.7 mH, EPC of 5.5 pF, EPR of one winding of 15 kΩ, leakage inductance of the two half-windings of 4.24 μH (K=0.994) and cancellation capacitors of 24 pF) improves inductor performance from about 1.25 MHz to 18.5 MHz. However, from 18.5 MHz to 30 MHz the performance is significantly worse, with a sharp and significant resonance peak at 25 MHz. It has been found by the inventors that this, deteriorated performance and resonance peak are due to resonance between the leakage inductance of the two half windings and the added capacitance. Thus parasitic capacitance cannot be considered to be cancelled (e.g., for a broad range of frequencies) by this approach. The large leakage inductance is, in turn, due to the less than optimal coupling coefficient between the CM windings when configured as schematically illustrated in FIG. 1D.
To improve the coupling coefficient in accordance with the invention, a bifilar winding strategy as illustrated in FIG. 5 is provided. A bifilar winding essentially forms windings with two conductors which are in close proximity at a substantially uniform spacing such as by, for example, attaching them together using an insulating material prior to forming a winding therewith in order to control the small spacing between conductors. Thus, essentially, the bifilar winding provides for the windings of the two common mode coils to be closely spaced such as to be substantially coincident in location and the leakage energy is thus stored only in the very small air gap between the turns of the two windings. By doing so, the measured coupling coefficient is raised from about 0.994 to about 0.99995. Applying the bifilar winding to the approach to the parasitic capacitance reduction circuit illustrated in FIG. 3B results in the greatly improved inductor performance above 800 KHz graphically illustrated in FIG. 6 which provides a 22 dB improvement at 30 MHz compared with the performance of the known technique using conventional toroidal CM windings, as illustrated in FIG. 4 and a 28 dB improvement at 30 MHz over the CM inductor without cancellation capacitance. The bifilar winding strategy of FIG. 5 can also be used advantageously as a perfecting feature in embodiments of the invention using DM windings as described above with reference to FIG. 2A. Experimental results of doing so are discussed in detail in the above-incorporated Wang et al. publication. FIG. 6 also indicates the substantial frequency independence of inductor performance to extremely high frequencies in this particular application but should also be understood to be generally characteristic of the effects of parasitic capacitance cancellation and frequency independence of inductor performance, particularly as an indicator of inductor quality, of other embodiments of the invention as illustrated, for example, in FIGS. 1A-1B and 2A-2B.

The cancellation of parasitic capacitance for DM and CM windings discussed above in accordance with the invention can also be extended to multi-phase inductors which are often employed in power supplies and voltage converters. In such applications, use of a split inductor may or may not be necessary since the connections across phases may function in precisely the same manner in the network of inductors presented by such applications. The physical constitution of the cancellation circuit may thus integrate all phases with the cancellation capacitance, be constituted by discrete elements or some combination of the two such as packaging an inductor winding with its cancellation capacitance as a three-terminal or four-terminal element which can be assembled with as many other such elements as the number of phases to be provided.

For example, FIG. 7 illustrates a multi-phase arrangement including three phases (for simplicity) wherein the connections corresponding to any given phase correspond to the circuit diagram of FIG. 1 but, instead of split windings being diagonally connected, each phase is connected to an adjacent phase in a manner which is preferably, but not necessarily, symmetrical. Inductances of different values can be accommodated by use of the generalization of the invention described above in connection with FIG. 1F. That is, the cancellation capacitance C1 and C2 of FIG. 7 may or may not be equal as long as the cancellation conditions are met, as described above. The same principles of operation are also applicable to multiple DM inductors in a single configuration depending on the relationship of the winding capacitance and the capacitance between each pair of windings in a manner similar to the single phase application described above.

The same concept is also applicable to multi-phase arrangements of CM windings with turns ratios which may or may not be equal in respective phases. Referring to FIG. 8, a plurality of circuits (three, as an example) as shown in FIG. 3C is shown connected in a network. Since Lx+LkL is equal among the phases, the phases are symmetric and the neutral voltage potential of the common connection is zero volts. Therefore the cancellation capacitances can be connected together with or without being grounded. It should be appreciated that if the inductors are not coupled, the cancellation of this embodiment of the invention applies not only to CM inductors/windings but to DM inductors/windings, as well since separated inductors on each of the phases can serve as both CM and DM inductors.

In view of the foregoing, it is seen that the invention provides substantial cancellation of effects of parasitic capacitance in inductors which greatly extends the usable frequency range thereof for power converter and EMI filter applications and the like; making the inductor performance substantially frequency independent to extremely high frequencies which is a major indicator of inductor quality. These effects are enhanced in accordance with the invention by a bifilar winding strategy for the preferred split inductor structure which also allows achievement of parasitic capacitance cancellation (as distinct from parasitic capacitance reduction) in accordance with at least a known technique for reducing effects of parasitic inductor capacitance. The usable inductor frequency range is thus increased by a factor of 10-100. It should be appreciated that the techniques and exemplary circuits described above can be applied to a phases where n=2 (where it is immaterial if the windings are split windings of a single phase or represent two phases), 3, 4 or any number of phases which may be desired or advantageous. The above techniques are also applicable to cancellation of inductor capacitance in all inductor applications and includes but is not limited to EMI filter inductors and other filter applications, inductors in all power electronics circuits and inductors in all electronic circuits. It should be similarly appreciated that the techniques discussed above for cancellation of parasitic capacitance can also be used for control of capacitance on both sides of a split winding or between multiple phases by designing both n and the cancellation capacitance.

While the invention has been described in terms of a single preferred embodiment, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:

1. An inductor device having substantial cancellation of turn-to-turn and turn-to-core parasitic capacitance and closely approximate cancellation of winding-to-winding parasitic capacitance of an inductor comprising:
 an inductor network, each inductor of said inductor network having a winding exhibiting turn-to-turn, turn-to-core and winding-to-winding parasitic capacitance, and capacitors connected to terminals of said windings to couple currents passed by said parasitic capacitance of each winding to a terminal of the same or another winding and/or an inductor in a ground return path.

2. An inductor device as recited in claim 1, wherein said capacitors are cross-coupled between said windings.

3. An inductor device as recited in claim 1, wherein the inductor windings are not split into multiple sections.

4. An inductor device as recited in claim 1, wherein the inductor windings are inductively coupled and capacitively coupled by winding-to-winding capacitance.
5. An inductor device as recited in claim 4, wherein said difference is negative and additional capacitance is provided in parallel with each inductor winding.

6. An inductor device as recited in claim 1, wherein said windings comprise bifilar windings.

7. An inductor device as recited in claim 6, wherein said bifilar windings are formed on a toroidal core.

8. An inductor device as recited in claim 1, wherein said windings are differential mode windings.

9. An inductor device as recited in claim 1, wherein said windings are common mode windings.

10. An inductor device as recited in claim 1 wherein said inductors of said inductor network correspond to plural phases.

11. A filter including an inductor having substantial cancellation of parasitic capacitances comprising: an inductor network having windings, said windings each having a turn-to-turn, turn-to-core and/or winding-to-winding capacitances, and capacitors connected to terminals of said windings to couple currents passed by a turn-to-turn and turn-to-core capacitances of one winding to a terminal of the same or another of said windings or an inductor in a ground return path and to compensate for winding-to-winding capacitance.

12. A filter as recited in claim 1, wherein said capacitors are cross-coupled between said windings.

13. A filter as recited in claim 11, wherein the inductor windings are not significantly inductively coupled.

14. A filter as recited in claim 11, wherein the inductor windings are inductively coupled and capacitively coupled by winding-to-winding capacitance.

15. A filter as recited in claim 14, wherein a difference between lumped turn-to-turn and turn-to-core capacitance and winding-to-winding capacitance is negative and additional capacitance is provided in parallel with each inductor winding.

16. A filter as recited in claim 11, wherein said windings comprise bifilar windings on a common core.

17. A filter as recited in claim 16, wherein said bifilar windings are formed on a toroidal core.

18. A filter as recited in claim 11, wherein said windings are differential mode windings.

19. A filter as recited in claim 11, wherein said windings are common mode windings.

20. The filter as recited in claim 11 wherein said filter functions to supply power, attenuate noise or convert voltage.